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spectral spreading is observed in the bicubic spline technique.
The Fourier Transform method results in the least amount of
aliasing, especially when the incomplete field is made up pri-
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I. INTRODUCTION

In meteorological analysis it is often necessary to

analyze fields of data values assigned to a regularly spaced

network of grid points on which only a part of the data is

available. This problem arises in numerous contexts, such

as analysis of synoptic fields with some observations miss-

ing or in analysis of forecast fields from numerical weather

prediction models at arbitrarily chosen time steps. The

latter case results from the use of time iteration tech-

niques in which values are predicted for only the even

staggered (i.e.. i + j = 2k, k = 0, 1, 2, ...., where i,j

are the grid indices) grid points at one time step and only

at the odd staggered (i.e., i + j = 2k + 1, k = 0, 1, 2,...)
grid points at the next. Various types of analyses may be

desired at arbitrarily chosen time steps in order to closely

observe the evolution of certain features in the field. In

order to perform such analyses, values of the parameter under

study must be available at each grid point at the time step

chosen to be analyzed. The problem then is to estimate values

for the grid points where data are missing in the way most

representative of the incomplete field so that information

will be neither added to nor taken from the field.

The solution of this problem requires the use of an

objective interpolation technique to obtain the missing

values. However, care must be taken in the choice of such

a technique so that the incomplete field is not misrepresented

by spurious information which may come about through the act

of completing the field. An example of such distortion is

the aliasing of waves of short wavelengths into longer wave

lengths, therefore artificially changing the spectrum of the

field at that time step. Since a spectral analysis is com-

monly performed on such fields in order to determine the ampli-

tudes of the various wave components within the field, such

distortion in completing the field is obviously undesirable.

The present study considers three objective methods of

completing a staggered data field. A two-dimensional field
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with equally spaced grid points in each direction is assumed.

The methods discussed are, (1) a simple algebraic average of

the values at the four grid points surrounding the grid point

with the missing value, or the Four Point Averaging Method

(FPAM), (2) rotation of the grid axes by 450 to obtain a

regular grid network of the given values and a bicubic spline

interpolation using these values, or the Rotation-Bicubic

Spline Method (RBSM), and (3) rotation of the axes and use of

Fourier coefficients from the rotated field to generate a

truncated Fourier series as the interpolation function, or

the Rotation-Fourier Series Method (RFSM). In all three

methods it is assumed that the field is periodic, so that

the grid point values are repeated in the regions outside the

grid in the same sequence in which they appear in the grid.

This assumption aids in obtaining values for the boundary

grid points in FPAM and in completing the rotated field in

RBSM and RFSM.

II. DESCRIPTION OF COMPLETION METHODS AND PERFORMANCE TESTS

In the methods described below, a two-dimensional array

of M grid points equally spaced in both directions is as-

sumed. The two cases of data staggering considered in each

completion method are (1) even staggered data, with data

available only at grid points whose indices (i,j) satisfy

the relation i + j = 2k; k = 0, 1, 2,...,M - 1, and (2) odd

staggered data, with values given only at grid points (i,j)

such that i + j = 2k + 1; k = 0, 1, 2,...,M - 1. The objec-

tive of each method is to use the known values to obtain repre-

sentative values at the grid points where data are not avail-

able.

A. Four Point Averaging Method (FPAM)

I. This method calculates a value at each grid point

in the field where data are missing by averaging the values

at the four grid points located immediately above, below, to

the right, and to the left of it in the grid. Thus

j (ui_ ,j+ ui+1,j + ui.j_1 + ui j+,)/4 for each grid

point (i,j) with a missing value. Values are obtained for

6



the outermost grid points with missing values by assuming the

field is periodic, so that values are repeated in the regions

adjacent to the grid. Thus, for the left-most grid points
u1= (UMIj + + Uoj_1 + u0,j+1)/4. The analogousu0,j =(M.1, ~+

expressions hold for computation of the missing values of the

grid points on the top, bottom, and right side of the grid.

B. Rotation-Bicubic Spline Method (RBSM)

In addition to FPAM, two interpolation techniques

were examined. Both methods begin with a rotation of the

(i,j) grid axes by 450 counter-clockwise to obtain (I,J)

grid axes of regularly spaced points. This is illustrated

for both the even and odd staggered cases for M = 8 in

Figure 1. The values for the grid points on the I,J axes

are obtained from the given values at locations where they

do not directly coincide by means of the previously stated

assumption that the original field repeats itself in adja-

cent regions. Thus ul, J : ui, j where for the even staggered

case

i = I - J + I; i = i + M for i -1, i = i - M for i> M - i

j = I + J - 1; j = j + M for j '-1, j = j - M for ji M - 1

and for the odd staggered case

i = I - J ; i + M for i -, i = i - M for i M - I

j = I + J - 1; 4 = j + M for j '-1, j = j - M for j > M - 1.

Note that in the resulting configuration, the grid points

with missing values are located in the centers of the grid

squares of the rotated grid network.

At this point, a bicubic spline interpolation

method was used in RBSM to interpolate values for the cen-

ters of the squares. The actual method used is described by

DeBoor (1962)* and involves the development of a bicubic poly-

nomial for each grid square. Thus, the interpolated value F

at any point x,y on the grid, where this point lies within

the grid square I,J such that x i- A x x I and yj-l Wy !yJ,

is obtained from the polynomial expression

*DeBoor, Carl, 1962: Bicubic spline interpolation. J. Math.
and Phys., 41, 212-218.

1I. .
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Fl J (x,y) =.~Pj~ i (x - x_ 1 )k(Y - YJ1 " (1)

The 16 values of P for each grid square (I,J) are made up

of linear combinations of u, 3u/$x, -u/8y, and 1 2u/Ixdy at

the four corners of each grid square. Thus, in order to

calculate the polynomial coefficients, the value of u and its

three indicated derivatives must be known at each grid point

on the rotated grid. DeBoor's method describes the means of

obtaining the remaining values of the derivatives once the

following values are known:
Ul~ I = -0, '1... , M - ; J - 0, 1,..,M - 1

= " u= ax I = 0, M - 1; J 0, 1,..., M - 1

qj= a I'J = 0, 1, ... , M - 1; J 0, M - 1

* r, x , I = 0, M - 1; J = 0, M - 1.

Note that these are the values of the normal derivatives at

their respective outermost grid points on the rotated grid

network. These values were obtained by subjecting the rotated

grid values to a Fast Fourier Transform algorithm to determine

the coefficients of the truncated Fourier series. If we intro-

duce the notation s m(x) = sin (2irmx/Ix), cn(Y) = cos

(2r ny/L ), etc., this Fourier series is expressed in the
form

u(x,y) cAmn (y) + BnC (x)sn (y)
n= tm-J~m m nmin m n

+ Cms(X)cn(y) + DmsW(x)Sn(Y). (2)

Since x = IAx, y JAy, and since we are considering the case

Ax =A y, then L = L= M=Mx. If we choose &x =r~y = 1, thenx y

= - Am nSm(I)Cn
( J ) + Bm nS(I)Sn(J)

PI, J n=0 M--0

mn- CmnCm(I)cr.(J) - Dm,ncm(I)sn(J)}

---P!I nAm nCm()(I)Cn(J)n-- m=0 -mnm nCmn S m (I)sn (I)c
(Is( -Dm sm( I)cn(J) *

mIn- m 94,



rI jp2ttmn A ns m(I)s n(J) - B,nSm(I)cn(J)
n=O mm mm

- CmnCm(I)sn(J) + Dm,ncm(1)Cn(J)}

where P = 2M and s (I) = sin (PmI),,c (J) = cos (PnJ), etc.Mm n
These expressions are used to obtain the respective values

of PlJ, qIj,J and r ij only at the grid locations mentioned

above. These values are then used along with the values of

uJ to determine the remaining values of pIJ, qIj' and

riJ through four sets of systems of algebraic equations

which are solved by Gauss elimination. A description of

the system of equations and a discussion of the technique

used in their solution is given in some detail by DeBoor and

will not be reproduced here.

Once the values of uiJ and its derivatives are

known at all grid points on the rotated grid, the values of

the interpolation coefficient 9for each grid square (I,J)

are determined from the matrix equation

9) Ili A(&x 1 1,) K1 jA T(4Yj-)

where B I1 ,..1  B I1 1  with u v,w q ,
T,J v(,xwi

B BI,j-1 B Ij Pv,w rvw

and

1 0 0 0

0 1 0 0
A(h) -3/h2  -2/h 3/h2  -1/h

2/h 3  1/h -2/h 2  1/h

where A represents the transpose of the matrix A. Since we
* have chosen~x -,y 1 for all squares, the matrix A is the

same for all computations. The values of l'J are the ele-
fk,l

ments in the kth row and lth column of the resulting product

matrix. Since the required value corresponds to the center

of each grid square, the interpolation expression for each

square I,J reduces to

10
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Then uj~ *5i,j =FIJ where the relationships

i = I - J + 1; i = i + M for i - -1, i = i - M for i > M - I

j = I + J ; j = j + M for J - -1, j = j - M for j > M - 1

for the even staggered case, and

i = I - J; i = i + M for i :--i, i i - M for i N M - I

j = I + J; j = j + M for j !- -1, j = j - M for j > NI - I

for the odd staggered case are used to locate the interpo-

lated values at their proper location in the original grid.

The resulting values u i'j i = 0, 1 ...... M- 1; j 0, 1,..,

M - 1 represent the values of the completed field for the

parameter u.

C. Rotation-Fourier Series Method (RFSM)

This method uses the rotated grid values obtained

in the manner described above and uses the truncated Fourier

series (2) to interpolate values at the centers of the grid

squares. First, the rotated grid values are subjected to

the Fast Fourier Transform algorithm as in RBSM, and the co-

efficients Amn , Bm,n , C and D for m = 0, 1,...,M/2;
m~' ,n m,n m ,n

n = 0, 1, ...M/2 are obtained. Then the interpolated value F

for the center of each grid square (I,J) is given by the expres-

sion

F I, n O A mIn c m(I + )cn(J + 1) + B m,nc m(I + ;)s n(J +
+ C m,nsm(I + )c n(J + ') + Dm,nSm(I + )Sn(J + )I(3)

where again we have chosen &x = &y = 1. Thus u i j = FI li

for the indices (i,j) of the grid points with missing values,

and the interpolated values are located at their proper loca-

tion in the original grid in a manner similar to that used

in RBSM.

After each method was formulated, it was tested to

determine its performance characteristics. Of particular in-
terest was the manner in which each method might distort

periodic variations existent in the original complete field.

To determine this effect quantitatively for each method, the

values of products of transcendental functions at the dis-

11
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crete intervals were used as the original grid point values.

For example, values for the product cos (2#bi/M) cos (2(nj/M)

i = O, 1, 2,..., M - 1; j = O, 1, 2, ..., M - I for various

values of m.n g M/2 were used for the grid point values in

one set of runs for each method. However, only the values

of these functions at either even or odd grid points were

used as inputs for the computations, and the respective

methods were used to fill in the missing values. Computa-

tions were carried out for only one value of M (M = 16), but

it is believed that any even value for M will yield the

corresponding results.

III. RESULTS AND DISCUSSION

The results of the model tests are interpreted from

the harmonic analyses of the fields completed by each method.

Since the values of the coefficients of the Fourier terms

which make up the complete input field are known, the ability

of each method to replicate this field from the staggered

data is determined by comparing the known coefficients with

the values of the Fourier coefficients which represent the

completed field. Any departure of the coefficients that

describe the completed field from the coefficients of the

original complete field represents a harmonic distortion

brought about by the completion method used.

The effect of FPAM was to partially distort the compo-

nent (m,n) present in the staggered input field for all

values of m,n>O. The distortion always occurred in such

a way that a portion of the amplitude of the component that

was present in the original field was lost to the component

[(M/2) - m, (M/2) - n], which shall be referred to as the
complementary component of (m,n). This distortion can be

viewed more quantitatively by considering the use of FPAM
in completing the field made up of the even or odd staggered

values of the function (i,j) defined by

• ij) =(m,n cm (i)C n(J) + /6m'n cm(i)S n(J)
n=0 m=0

s Mc (j) + c (i)s W( (4
6mn Fm,n m n!", 6 mn~m(i)Cn(j) + ,n~m(i)Sn(J)t 2

12



for i,j = 0, 1, 2,..., - I and the arbitrary (M/2) + 1 by

(M/2) + 1 matrices or,tS 5and r. Since FPAM calculates

the missing values in the grid by means of a linear combina-

tion of the known values, it can be thought of as a linear

operator in completing the field. When FPAM is used to

complete a staggered data field composed of a linear com-

bination of several components, the results are equivalent
to the sum of the fields of the individual components as

completed by FEAM. This was verified in several test runs.

For this reason, the results of the completion of the

staggered values from (4) above could be inferred from the

results of completing fields represented by individual

terms in the series. The Fourier coefficients representing

the field that would result from the completion of the even

staggered values from (4) are:

SAmn =em,n( 0m,n +Gf(M/2)-m (M/2)-n)

Cmn -m,n( 6 m,n - 6 (M/2)-m, (M/2)-n)

Dm,n --m,n(  ,n + M/2)-m, (M/2)-n'

The coefficients which represent the field completed from the

odd staggered values ares
A -& (o(m - ((M2)-

Am,n mn m,n (M/2)-, (M/2)n )

Bmn =6m~n(6mn + (M/2)-m, (M/2)-n)

Cm,n = m,n( rCm,n + K(M/2)-m, (M/2)-n)

Dm,n =em,n( (nn - '(M/2)-m, (M/2)-n "

In these expressions, Am,n , Bm,n, Cm,n, and Dm,n represent

the coefficients of the truncated Fourier series (2) for the

completed field and e,n is a measure of the distortion of

13
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the (m,n) component present in the staggered field and shall

be referred to as the response function for FPAM. Values

of6, n for selected values of (m,n) are displayed in Table 1.

TABLE 1. Values of Response Function E for FPAv, M = 16.m,n

8 .4810 .3457 .1543 .0190

7 .5190 .5000 .4458 .3647 .2690 .1734 .0923 .0381 .0190

6 .5542 .4189 .2276 0923

5 .6543 .6353 .5811 .5000 .4043 .3087 .2276 .1734 .1543

n 4 .7310 .5957 .4043 .2690

3 .8457 .8266 .7725 .6913 .5957 .5000 .4189 .3647 .3457

2 .9078 .7725 .5811 .4458

1 .9810 .9620 .9078 .8266 .7310 .6353 .5542 .5000 .4810

0 .9810 .8457 .6543 .5190

0 1 2 3 4 5 6 7 8

m

Note that 6m,n n,m for all (m,n), indicating the sym-

metry resulting from the use of a square grid. The value

of 6 m,n represents that fraction of the amplitude of the

harmonic (m,n) present in the original field which is pre-

served in the completed field and the fraction of the ampli-

tude of its complementary harmonic which io aliased in such

a way as to result in constructive (+) or destructive (-)

interference with the wave with components (m,n). Note also

ta&,n +&(M/2)-, (M/2)-n I for all (mn); thus the
complementary harmonic has the complementary fraction of its

amplitude preserved in FPAM. Table I shows that this frac-

tion decreases with increasing value of the sum m + n, or

with increasing value of one of the two components when the

other is held constant. Thus, a larger fraction of the

amplitudes of the longer waves (smaller wave components) than

those of shorter waves are preserved when FPAM is used to

complete the field. Only a small amount of their amplitude

1" .t' lost to the complementary short wave. In contrast, the

.horter waves are heavily aliased to their long wave complements.

14



The relationship between the results for the comple-
tion of the even staggered field and those for the odd stag-

gered field comes about from the way complementary harmonics
combine to make up the even and odd staggered values. To ii-

lustrate this, consider the values of the sum of the two com-
plementary components

m,ncos (Pmi)cos (Pnj) +(M/2)_m, (M/ 2 )_ncos1P[(M/2 - m]4i

X cosfP[(M/2) - n~j}.
It can be shown that this sum is equivalent to

+mn 1/2)-m, (X,/2)n 0 0 s (7ri)cos (Ifj) cos Pmi cos Pnj.

The factor cos (11i)cos (irj) is positive for even staggered

values of (i,j), and negative for odd staggered values.

The term in brackets represents the complete amplitude of the

(m,n) component of the cos.cos term within the staggered

field, and it is actually this amplitude that is modified by

FPAM. Since all of the data values used to generate the

missing values are represented by this expression, the sign

in the amplitude is preserved in the completed field. Thus,

the entire completed field is made up of components of this

form with an amplitude modification, as can be seen in the

Fourier components of the field as completed by FPAM. The

same sign orientation can be shown to hold for the sin'sin

terms, while the opposite relationship (amplitudes additive

for odd staggered grid points, subtractive for even stag-

gered grid points) exists for the cos-sin and sin-cos

terms in the Fourier expansion. Since complementary com-

ponents combine in this way to represent the even and odd

staggered values on which the completed fields are based,

regardless of which completion method is used, the Fourier

coefficients representing the completed fields using any
method will have this general form.

This fact is borne out in the results of the use of

RBSM to complete the staggered data field. Again, if we use

the even and odd staggered values of (4) as our incomplete

fields, we find that the field completed from the even

staggered data has the Fourier components

15
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A,, - n + A
m,n m,n m,n (M/2)-m, (M/2)-n m,n

m,n Vm,n( (m,n - (6(M/2)-m, (M/2)-n) + n

Dm,n ,n ( m,n+ r(M/2)-m, (M/2)-n) m,n

and the completed odd staggered field has the components

A 4v( 6C + rm,n mn m,n (M/2)-m, (M/2)-n A
m,n

Bm,n m , n i,n + 4 M/2)-m, (M/2)-n) + mn

m,n

Cmn Kn( mr + &(M/2-,(/)n

Cmnn= m, ,n (/2)-m, (p2-) C~O

Dn=mn (m,n n M2-, (M/2)-n) + im,n

In this case, the response function can be separated into a

sum of two separate factors. The factor V n, displayed as

a function of m and n in Table 2, is the primary response

TABLE 2. Primary Response Function I/  for RBSM, M = 16

.3548 .0767 .0067 .0001

7 .6452 .5000 .2528 .1147 .0430 .0135 .0034 .0006 .0001

6 .7472 .2334 .0400 .0034

S.9233 .8853 .7666 .5000 .2316 .1080 .0400 .0135 .0067
n 4 .9570 .7684 .2316 .0430

3 .9934 .9865 .9601 .8920 .7684 .5000 .2334 .1147 .0767

- .9966 .9601 .7666 .2548
1 .9999 .9995 .9966 .9865 .9570 .8853 .7472 .5000 .3548

0 .9999 .9934 .9233 .6452

0 1 2 3 4 5 6 7 8

m
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function and behaves in a manner similar to the response
functiond from FPAM. However, when even or odd staggered

~m,n
values from a single Fourier term are used as input, non-

zero Fourier coefficients for other than just that component

(m,n) and its complement are involved in the resulting field.

For example, appreciable values for the Fourier coefficients

Bm,n , Cm,n , and Dm'n in addition to Am,n existed for many

values of (m,n) within the completed field when even or odd

values for cos (2ifni/M)cos (2Trnj/M) were used in the in-

complete field. This indicates a sort of spectral spread-

ing of the harmonic originally existent in the input field

by RBSM, which was not at all evident in FPAM. The factor

in the expressions represents this distortion. The nature of

this departure in both magnitude and phase distortion was

investigated by using values of the function cos (2qlki/M)

cos (2Tlj/M) for various integer values of k, 1< M/2 at

even staggered grid points. These incomplete fields were

then completed using RBSM. For each pair of values (k,l)

used, the completed field is given by the expression

" (i,j) = Uki + (1 - l)cos(7Ti)cos(Tj) ck(i)cl(j)

-Cos(Iri) Cos (Mr)]X cm) Mc (j)+ -coCF CS(T)]fn=O m=O m,n m n

+ mncm(i)sn(j) + [ ' )cn(J)
B ncm (  F m,n 'sis 3] 'm,nmicn)

)Sn(J + iklk()sl(J)

a sk(n)cl(J) + fm mis l(J1k,lik k

mmnI.+ fCm,ns mC n(j) + fD~ sm Wis n(ij (5)

for k + 1 / M/2, and by

(ij) .. + cos(ri)cos(lri]c Cl k .. .j) (6)

17
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for k + 1 = M/2 which is identically zero at odd staggered

grid points. Note that both expressions reduce to cos(2rki/M)

cos(2rylj/M) at even staggered grid points as is expected

since these were the values given as input. The form of (5)

comes about because it was observed from the Fourier analysis

of the resulting field that for all cases where k + 1 M I/2

and for all m,n : (M/2) - 1,

Am,n - A(M/2)-m, (M/2)-n

m, n B(M/2)m,

mn (M/2)-m, (M/2)-n

The value of twice the quantity in[ f in (5) was obtained at

all odd staggered grid points by subtracting the value of

the first term in (5) from the completed field values at all

odd grid points. The magnitude of the resulting field of

odd staggered departure values was evaluated by averaging

their absolute values over the grid. The average absolute

values from each completed grid for odd values of 1 are dis-

played in Table 3. The magnitude of this departure of the

TABLE 3. Average Absolute Value of Secondary Distortion
Factor Obtained from Using RBSM on Even Stag-
gered Values of cos(2frki/M).cos(2rlj/M)

7 .00002 .04831 .02138 .00695 .00192 .00034 .00004 .00005

5 .02209 .05192 .00002 .04906 .01515 .00768 .00206 .00078

3 .00206 .00768 .01515 .04906 .00002 .05192 .02209 .01563
S

.00004 .00034 .00192 .00695 .02139 .04831 .00002 .05850

1 2 3 4 5 6 7 8
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generated values from the primary response function

ccy

is largest for values of (k,l) near k + I = M/2 and de-

with increasing value of I(M/2) - (k + 1)1. Its

value drops to zero at k + 1 = M/2 as is indicated by (6).

The odd staggered departure values were plotted on a hori-

zontal grid, and shading was added to distinguish the regions

of positive and negative values and thus indicate the distri-

bution of phase of the departure component. The results of
this analysis for four pairs of values for (k,l) are shown

in Figure 2. The existence of several wave numbers in
both directions is evident in each diagram, again indicating

a spectral spreading of the original component over a narrow

band of wave components. No clear correlation of the width

of this band with values of k + 1 was observed, in contrast

with the variation in the amplitude within the departure

. Ifields with k + 1 as shown in Table 3. However, tl. mono-

tonic variation of the primary distortion factor I/n from

RBSM in contrast with the variation in magnitude of this

secondary distortion with k + 1 indicates the distinctly

separate nature of these two distortions which come about in

the use of this method.

The results from the data grid completion using the
RFSM have the general form common to all methods as discussed.

previously. Again, using the even staggered values from (4)

on an M x M data grid, the RFSM yields a completed field

with the Fourier coefficient values

m ' [( :( )n m + nC M/2A :. m,n (M/2)-m, (M/2)-n

+' m + n =M/2
A 2 n M/2)-m, ( M/2)-n

0(M/2)-n )  m + n = M/2

~f~(6min ~ (/2)n ; m+ n M Iv/2

4.iBmn .m,n (/)m /2-n

B mn + n> M/2mn (./m ,n -'?6 M/2)-m, (M/2)-n) i0 m + n > M/2

S(M,n - M/2)-m, (M2)-n m + n < MI/2
Ii> ' Cm'n =i m,n - M/2)-m, (M/2)-n) Ia m + n = M/2

10 1 m + n > M/2
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k-2, 1-3 kz3, lat

k-1, 1-5 kn6, IzI

I., Figure 2. Distribution of phase in the secondary distortion
factor from RBSM. Shaded areas are region,, where distortion
factor has a positive value; unshaded refgion0  indicate

negatives.
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;mnm nj n m n M/2
D,n (M/2)-m, (M/2)-n M/2

nn (M/2)-m, (M/2)-n ,i /
0in + n > M/2

" while the completion of the odd staggered field yields the
coefficient values

0C - m + n<M/
m,n (M/2)-m, (M/2)-n ; n

A )1 (~n =r 2 mn - IM/2)-m, (M/2)-n) ;n + n =

0 ; m + n > M/2

m,n + /M/2)-m, (M/2)-n ; m + n <M/2

Bm n' -+ /
; m + n > M/2

0 + n ; m + n  " M/ 2

"nn + M/2)-m, (M/2)- M/2

C m,fl m' (M/2)-m, (M/2)-n ;im + n = M/2

; m + n > M/2

IF-n-(((/2)-m, (r/2)-n ; m + n < M/2

Dm n' ' n m m nm .n J - (M/2)-m, (M/2)-n) ; m + nl = MV/2

O 0 ; m + n > M/2.

These results were inferred from using single Fourier terms
to generate the incomplete fields and using the fact of the

linearity of the completion operator as was done in FPAM.

They are similar in nature to those obtained from FPAM. The

only difference is that instead of a continuous response

function as in the case of FPAM, here we have a response

function with only three values over the entire range of

values of the sum m + n. For values of m + n< M/2, the en-

tire amplitude of the complementary wave component is aliased

to either add to or subtract from the amplitude of the wave

with components m,n. For the sum m + n = M/2, the response

is identical to that of FPAM - exactly half of the ampli-

tude of any component is preserved, and half of the ampli-

tude of its complementary component is either added to or

subtracted from it. Finally, for components (m,n) such that

21
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m + n > M/2, the entire wave is aliased to its complement

which always has components whose sum is less than M/2.

In all three methods, partial or total aliasing of

short waves to their long wave complements occurs. We have

discussed the fact that this is unavoidable because of the

way complementary components combine when using the sums of

their values at even or odd staggered grid points to make up

the incomplete grid. This effect would also occur in the

completion of an observed meteorological field in which

values of the variable are available only at staggered

grid points, since any natural field is made up of a sum

of many pairs of complementary components when it is exam-

ined according to a particular spatial resolution on a

limited-area grid. However, in RBSM an additional distor-

tion that was not obvious in the other two methods appears

in the form of the spreading out of a component present in

the incomplete field over a narrow band of harmonics.

Since naturally occurring meteorological fields are made
up of an infinite number of components, it is evident thati

the use of such methods in completing staggered meteoro-

logical data fields will result in some aliasing of short

waves into longer waves. For an M x M data grid, the ampli-

tudes of waves with components (m,n) such that m + n < M/2

will be increased at the expense of the shorter waves. How-

ever, in most meteorological fields, the amplitudes of the

longest waves are usually the largest, and the amplitudes

decrease with increasing wave number. For example, usually

the largest variations in the pressure field occur on the

synoptic scale, with mesoscale and microscale pressure per-

turbations usually being smaller in amplitude (except

possibly when areas of severe storms lie within the region

of interest). For this reason, there is some advantage in

the use of RFSM to complete such a field in that the only

distortion occurring to longer waves is the addition or sub-

traction of the amplitude of the complementary short waves.

No fractional distortion occurs in waves with components (m,n)
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such that m + n < M/2. If the amplitude of the short wave is
small, the distortion of the amplitude of the long wave is

minimized, while the short wave is aliased out altogether.

While this complete removal of waves with components (m,n)

such that m + n > M/2 must be considered a disadvantage to

the use of RFSM, it is possible that the longest of these
waves could be preserved in the completed field if greater

spatial resolution were employed in the grid. However, they
will be somewhat modified by the waves just shorter than the

new value of the critical wave number criterion (m + n = M/2).

IV. SUMMARY AND CONCLUSIONS

The results of this study may be summarized with the aid
of the schematic diagram in Figure 3. In this diagram, the

wave number in the x direction of the grid (m) is on the
abscissa, while the y wave number (n) is on the ordinate.

The three wave number pair categories are indicated in the

figure. When m + n - M/2, the waves present in the original
complete field are resolvable in the staggered field. When

m + n = M/2, the variations are only partially resolvable on

the staggered grid. For cases where m + n > M/2, waves
which can be resolved in the complete field cannot be resolved
on the staggered field because the number of grid points in

each direction is halved. These facts greatly influenced the

ability of the methods to complete the fields correctly.

When RFSM was used to complete the staggered fields

derived from the complete fields in which only the long waves

(m + n < M/2) existed, no aliasing was observed. When FPAM

and RBSM were used, a fraction of the amplitude of each of

these harmonics was aliased to their complementary
[(M/2) - m, (M/2) - n components, and this fraction increased
with the sum m + n. The balance of the amplitude was retained

by the original component (m,n). In addition, some appre-

ciable amplitudes were observed in other components in the
case of RBSM, indicating an introduction of spurious infor-
mation into the completed field. For cases in which m + n

. M/2, all three methods completed the fields in the same
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M/2

n

(LONG 'WAy(S)

0 0m M/2

Figure 3. Schematic diagram of wave number space; m is

wave number in x direction, n is wave number in y

direction.
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manner: half of the amplitude of the component was preserved

in the completed field, and half was aliased to its comple-

ment. Finally, in cases where only the short waves (m + n

> M/2) were present in the original field, the entire ampli-

tude of the (m,n) component was aliased to its complement

when RFSM was employed. In contrast, FPAM and RBSM showed

an aliasing of only part of the amplitude to the complementary

component as they did in the m + n < M/2 cases. The amount

aliased in the m + n >M/2 cases continued to increase with

the sum m + n; in fact, the amount of amplitude retained in

these components is exactly the amount that had been lost by

their complements through aliasing in the m + n < M/2 cases.

As was observed in the m + n < M/2 cases, RBSM introduced

artificial amplitude values for other harmonics.

Because the short waves (m + n > M/2) are unresolvable

on the staggered grid, none of the methods was able to

replicate the fields which contained these small scale varia-

tions. RFSM had a perfect record of completing the fields as

long as only long waves (m + n < M/2) were present, while

the other methods had varying degrees of success even with

these large scale variations. These results show that the

Rotation-Fourier Series Method can be successfully used to

complete staggered data fields when it is certain that only

these long waves are present in the sample under consideration.

If the spectrum of the data field contains variations of

numerous spatial scales, as is true in most cases, aliasing

from short waves to long waves will occur in the process of

completing the field. Without knowing the spectrum of the

original field, it is impossible to ascertain the exact

spectral distortion that will occur. The completed field must
4

be considered at best an estimate of the true field from which

the staggered values were derived.
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